
Extremely Low Probability of 
Rupture Code: Lessons learned 

from 15 years of development and 
applications

Cédric Sallaberry, Robert Kurth

Frederick Brust, Elizabeth Kurth-Twombly

Markus Burkardt

Nathan Glunt



xLPR Timeline
• xLPR development spans over 15 years and continues

1.0 2.0/2.1 2.2 2.3 2.4 3.0

2008/2009
Beginning of the project

2010 
Version 1.0 “Pilot version”
completed (internal release)

2015 
Version 2.0 completed 
(internal release)

April 2020
xLPR v2.1 publicly 
released

March 2022
xLPR v2.2 released

August 2024
xLPR v2.3 released



Pilot Study

Needed Improvement:
• Reliance on the pilot study. Simpler assumptions were made, but 

some of the new development was still based on those 
assumptions (e.g., crack numbering by subsegment location).

Beneficial:
• Smaller scope: Faster to develop and save time as some errors were 

identified early on and fixed when developing the next version.
• Lessons learned reported in NUREG-2110 (# ML12145A470).
• Better understanding of the overall goal for the whole development 

team, which allowed moving to a top-down approach.



Multi Science-centric approach

Needed Improvement:
• Lack of software programmers. Software development is a full-time 

job now. Scientists still at the core of the module, but expert 
developers needed for efficient and modern programming.

Beneficial:
• Having experts in fracture mechanics and in probabilistic analysis from the 

start. Ensure that all aspects of PFM code are considered:
• FE modelers for Weld Residual Stresses confirmed that 3rd order or 4th order polynomial 

fit would not work for some profiles. Keep the physics realistic. And WRS influences the 
results A LOT.

• Having risk analyst/statistician from the start helped the top-down development and 
the definition of the quantities of interest.

• Relying on existing knowledge and previous codes (save development time)
• Involvement from both the regulators and vendors/utilities brings 

convergence toward conservative but still realistic approaches.



Modular approach

Needed Improvement:
• Not enough effort was given for the configuration. xLPR is currently limited for 

crack evolution in welded pipes. 
• Some requirements were identified later during the development and needed 

some specific implementation (pre-processor).
• Code has a high requirement in running time and memory, limiting the estimate 

of extremely rare events (less than 10-6) with SRS (not the only reason).

Beneficial:
• Initial goal was to give the user the possibility to develop their own 

module/equations and “plug” them to the framework. Still valid point.
• Having each mechanism in a separate module lead to smoother 

evolution. Modules are dissociated from the framework and do not need 
to be updated at the same time.

• xLPR was developed as a larger PFM platform so that it can cover other 
degradation mechanisms and component configurations in the future.



QA + Verification and Validation

Needed Improvement:
• The purpose of each QA document was not clear and led to confusion and 

inconsistencies when writing them (equations in SRD or SDD or both?).
• Cost of maintenance is high. 
• Bugs/errors continue to be identified after completion of V&V.

Beneficial:
• Large and consistent development of test-cases at the module level AND 

the framework level. Testing how each module perform by itself and how 
all perform together as a complex code. Several errors were found and 
corrected.

• Extensive documentation for each module, for the framework and for the 
inputs.



Training

Needed Improvement:
• Some of the training material (older videos) is outdated.
• Maintenance cost of training is high.
• Still steep learning curve for new users. The code needs an initial 

knowledge in the physics involved and in probabilistic approach: 
even when running a deterministic example.

• The development of a user group was considered to support new 
users, but it requires a logistic effort and enough users.

Beneficial:
• Extensive training material, with examples to run, recorded videos, 

large user manual.



Code purpose and life
2008 Vision

Comprehensive, vetted, adaptable, and flexible

• Reliance on Pilot Study
• Lack of software programmers
• Inconsistency in development 

(preprocessor)
• Memory and Time limitations
• Limited problem configuration
• Cost of maintenance of QA and 

V&V
• Cost of maintenance of training

• Steep Learning Curve

• Development of V3.0 framework with 
software programmers from top down 
again

• New optimization modules
• Identifying new areas of applications
• Automatisms in testing and documents 

generation (GitHub environment, 
doorstop…) and training examples

• You’re supposed to be smart, so you’re 
on your own for that.

2023 Vision 
Simple, efficient, flexible, high-quality tool for PFM 

analyses in rulemaking, design, and aging management

A software remains alive as long as it has a use


	Slide 1: Extremely Low Probability of Rupture Code: Lessons learned from 15 years of development and applications
	Slide 2: xLPR Timeline
	Slide 3: Pilot Study
	Slide 4: Multi Science-centric approach
	Slide 5: Modular approach
	Slide 6: QA + Verification and Validation
	Slide 7: Training
	Slide 8: Code purpose and life

